
Coe 132 programming and problem solving

 1

Hanady S. Ahmed

Lecture 10

Functions

 A function is a group of statements that together perform a task.

Every C++ program has at least one function, which is main(), and all the

most trivial programs can define additional functions. You can divide up

your code into separate functions.

 A C++ function definition consists of a function header and a function

body. Here are all the parts of a function :

• Return Type − A function may return a value. The return_type is the

data type of the value the function returns. Some functions perform

the desired operations without returning a value. In this case, the

return_type is the keyword void.

• Function Name − This is the actual name of the function. The

function name and the parameter list together constitute the function

signature.

• Parameters − A parameter is like a placeholder. When a function is

invoked, you pass a value to the parameter. This value is referred to

as actual parameter or argument. The parameter list refers to the type,

order, and number of the parameters of a function. Parameters are

optional; that is, a function may contain no parameters.

• Function Body − The function body contains a collection of

statements that define what the function does.

 Syntax of Function

return-type function-name (parameters)

{

 // function-body

}

Coe 132 programming and problem solving

 2

Hanady S. Ahmed

//Declaring, Defining and Calling Function

#include <iostream>

using namespace std;

int sum (int x, int y); //declaring function

int main()

{

 int a = 10;

 int b = 20;

 int c = sum (a, b); //calling function

 cout << c;

return 0;}

int sum (int x, int y) //defining function

{

 return (x + y);

}

// Program to find the maximum number between two

numbers and print it

#include <iostream>

using namespace std;

Coe 132 programming and problem solving

 3

Hanady S. Ahmed

// function declaration

int max(int num1, int num2);

int main () {

 // local variable declaration:

 int a = 100;

 int b = 200;

 int ret;

 // calling a function to get max value.

 ret = max(a, b);

 cout << "Max value is : " << ret << endl;

 return 0;

}

// function returning the max between two numbers

int max(int num1, int num2) {

 // local variable declaration

 int result;

 if (num1 > num2)

 result = num1;

 else

 result = num2;

 return result;

}

Calling a Function

 Functions are called by their names. If the function is without

argument, it can be called directly using its name. But for functions with

arguments, we have two ways to call them,

1.Call by Value

2.Call by Reference

Coe 132 programming and problem solving

 4

Hanady S. Ahmed

Call by Value

 In this calling technique we pass the values of arguments which are

stored or copied into the formal parameters of functions. Hence, the

original values are unchanged only the parameters inside function

changes.

void calc(int x);

int main()

 {

 int x = 10;

 calc(x);

 cout<<x;

 }

 void calc(int x)

 {

 x = x + 10 ;

 }

 Output : 10

 In this case the actual variable x is not changed, because we pass

argument by value, hence a copy of x is passed, which is changed, and

that copied value is destroyed as the function ends(goes out of scope).

So the variable x inside main() still has a value 10.

But we can change this program to modify the original x, by making the

function calc() return a value, and storing that value in x.

int calc(int x);

int main()

 {

 int x = 10;

 x = calc(x);

 cout<< x;

 }

 int calc(int x)

 {

 x = x + 10 ;

 return x;

 }

Coe 132 programming and problem solving

 5

Hanady S. Ahmed

Output : 20

 Call by Reference
 In this we pass the address of the variable as arguments. In this case the

formal parameter can be taken as a reference or a pointer, in both the case

they will change the values of the original variable.

void calc(int *p);

int main()

{

 int x = 10;

 calc(&x); // passing address of x as argument

 cout<< &x;

}

void calc(int *p)

{

 *p = *p + 10;

}

0x7fff31d5107cOutput :

le with little change:exampThe same

void calc(int *p);

int main()

{

 int x = 10;

 calc(&x); // passing address of x as argument

 cout<< x;

}

void calc(int *p)

{

 *p = *p + 10;

}

20Output :

value Default

nt b=10,int c=20);sum(int a,int i

int main(){

cout<<sum(1)<<endl;

)<<endl;,2cout<<sum(1

)<<endl;,2,31cout<<sum(

Coe 132 programming and problem solving

 6

Hanady S. Ahmed

return 0}

int sum(int a, int b, int c){

int z;

z=a+b+c;

return z;}

:Output

31

32

6

 Procedural programming

 A procedural language is a type of computer programming language that

specifies a series of well-structured steps and procedures within its

programming context to compose a program. It contains a systematic order

of statements, functions, subroutines and commands to complete a

computational task or program.

 The procedural language separates a program within variables, functions,

statements and conditional operators. Procedures or functions are

implemented on the data and variables to perform a task. These procedures

can be called/invoked anywhere between the program hierarchy, and by

other procedures as well. A program written in procedural language contains

one or more procedures.

Under this definition, we get:

• C
• C++
• Java
• Python
• JavaScript
• BASIC
• Perl

Coe 132 programming and problem solving

 7

Hanady S. Ahmed

Encapsulation

 Encapsulation is a process of combining data members and functions in a

single unit called class. This is to prevent the access to the data directly, the

access to them is provided through the functions of the class. It is one of the

popular feature of Object Oriented Programming(OOPs) that helps in data

hiding.

How Encapsulation is achieved in a class?
To do this:

1) Make all the data members private.

2) Create public setter and getter functions for each data member in such a

way that the set function set the value of data member and get function get

the value of data member.

#include<iostream.h>

class sum

{

private: int a,b,c;

public:

void add()

{

clrscr();

cout<<"Enter any two numbers: ";

cin>>a>>b;

c=a+b;

cout<<"Sum: "<<c;

https://beginnersbook.com/2017/08/cpp-oops-concepts/

Coe 132 programming and problem solving

 8

Hanady S. Ahmed

}

};

int main()

{

sum s;

s.add();

}

Output:

Enter any two number:

4

5

Sum: 9

Above class adds numbers together, and returns the sum. The public

member add is the interface to the outside world and a user needs to know it

to use the class. The private members a, b and c are something that are

hidden from the outside world, but are needed for the class to operate

properly.

